Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1742492

ABSTRACT

SARS-CoV-2 variants surveillance is a worldwide task that has been approached with techniques such as Next Generation Sequencing (NGS); however, this technology is not widely available in developing countries because of the lack of equipment and limited funding in science. An option is to deploy a RT-qPCR screening test which aids in the analysis of a higher number of samples, in a shorter time and at a lower cost. In this study, variants present in samples positive for SARS-CoV-2 were identified with a RT-qPCR mutation screening kit and were later confirmed by NGS. A sample with an abnormal result was found with the screening test, suggesting the simultaneous presence of two viral populations with different mutations. The DRAGEN Lineage analysis identified the Delta variant, but there was no information about the other three mutations previously detected. When the sequenced data was deeply analyzed, there were reads with differential mutation patterns, that could be identified and classified in terms of relative abundance, whereas only the dominant population was reported by DRAGEN software. Since most of the software developed to analyze SARS-CoV-2 sequences was aimed at obtaining the consensus sequence quickly, the information about viral populations within a sample is scarce. Here, we present a faster and deeper SARS-CoV-2 surveillance method, from RT-qPCR screening to NGS analysis.


Subject(s)
COVID-19/diagnosis , DNA Mutational Analysis/methods , Genome, Viral/genetics , Mutation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , Humans , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity
2.
STAR Protoc ; 2(4): 100869, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1433914

ABSTRACT

Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel. This approach has been shown to determine escape mutants that are consistent with more laborious SARS-CoV-2 pseudoneutralization assays. For complete details on the use and execution of this protocol, please refer to Francino-Urdaniz et al. (2021).


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , DNA Mutational Analysis/methods , Mutation , SARS-CoV-2/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/virology , Humans , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Exp Mol Pathol ; 120: 104634, 2021 06.
Article in English | MEDLINE | ID: covidwho-1152690

ABSTRACT

Lung and colorectal cancers (CRC) have two of the highest mortality rates among all cancer types, and their occurrence and the need for personalized diagnostics and subsequent therapy were not influenced by the COVID-19 pandemics. However, due to the disruption of established delivery chains, standard assays for in vitro diagnostics of those cancers were temporarily not available, forcing us to implement alternative testing methods that enabled at least basic therapy decision making. For this reason, we evaluated rapid testing on the Biocartis Idylla™ platform (Biocartis, Mechelen, Belgium) for four important genes commonly mutated in lung and colorectal cancers, namely EGFR, NRAS, KRAS, and BRAF. Clinical specimens from which the mutation status has previously been determined using Next Generation Sequencing (NGS), were retested to determine whether Idylla™ can offer accurate results. To compare the results, the sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) are calculated for each of the mutation types and then combined to determine the values of the Idylla™ system in total, while setting NGS as the gold-standard basis the assays were compared with. Idylla testing thereby displayed acceptable sensitivity and specificity and delivered reliable results for initial therapy decisions.


Subject(s)
DNA Mutational Analysis/methods , GTP Phosphohydrolases/genetics , High-Throughput Nucleotide Sequencing/methods , Membrane Proteins/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Pandemics , Reproducibility of Results , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sensitivity and Specificity
5.
J Transl Med ; 18(1): 321, 2020 08 24.
Article in English | MEDLINE | ID: covidwho-727282

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its surface spike glycoprotein (S-protein) recognition on the receptor Angiotensin-converting enzyme 2 (ACE2) in humans. However, it remains unclear how genetic variations in ACE2 may affect its function and structure, and consequently alter the recognition by SARS-CoV-2. METHODS: We have systemically characterized missense variants in the gene ACE2 using data from the Genome Aggregation Database (gnomAD; N = 141,456). To investigate the putative deleterious role of missense variants, six existing functional prediction tools were applied to evaluate their impact. We further analyzed the structural flexibility of ACE2 and its protein-protein interface with the S-protein of SARS-CoV-2 using our developed Legion Interfaces Analysis (LiAn) program. RESULTS: Here, we characterized a total of 12 ACE2 putative deleterious missense variants. Of those 12 variants, we further showed that p.His378Arg could directly weaken the binding of catalytic metal atom to decrease ACE2 activity and p.Ser19Pro could distort the most important helix to the S-protein. Another seven missense variants may affect secondary structures (i.e. p.Gly211Arg; p.Asp206Gly; p.Arg219Cys; p.Arg219His, p.Lys341Arg, p.Ile468Val, and p.Ser547Cys), whereas p.Ile468Val with AF = 0.01 is only present in Asian. CONCLUSIONS: We provide strong evidence of putative deleterious missense variants in ACE2 that are present in specific populations, which could disrupt the function and structure of ACE2. These findings provide novel insight into the genetic variation in ACE2 which may affect the SARS-CoV-2 recognition and infection, and COVID-19 susceptibility and treatment.


Subject(s)
Betacoronavirus/physiology , Mutation, Missense , Peptidyl-Dipeptidase A/genetics , Protein Interaction Domains and Motifs/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , Binding Sites/genetics , COVID-19 , Coronavirus Infections/ethnology , Coronavirus Infections/genetics , Coronavirus Infections/virology , DNA Mutational Analysis/methods , Databases, Genetic , Genetic Predisposition to Disease/ethnology , Genetic Variation , Geography , Humans , Models, Molecular , Molecular Docking Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/ethnology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , Protein Binding , Protein Structure, Secondary/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL